如何从低品位含氦天然气中提取氦气?

天然气提氦 气体分离 膜分离技术 离子液体膜

氦气是国家重要战略稀有气体资源,在国防军工、高端医疗、电子制造和大科学装置等领域都发挥着不可替代的作用。我国对氦气的需求量极大全球第二,但超过95%的氦气都依赖进口,是严重的“卡脖子”气体。氦气通常是与天然气伴生的,我国已发现的氦气藏普遍品位低,其中浓度低于500 ppm的气藏约占一半,低品位含氦天然气因提取困难而未得到充分利用,造成了严重的资源浪费,因此开发面向贫氦天然气的低成本提取技术是保障我国氦资源安全的关键难题。气体分离膜技术因分离过程不涉及相变,具有绿色、高效、节能的显著优点,为低成本天然气提氦提供了新机遇。开发气体分离膜与低温吸附或者低温精馏的耦合提氦技术被认为是实现低成本天然气提氦的有效途径,即通过膜分离富集的粗氦再经低温吸附或低温精馏得到高纯氦。膜富集得到氦气的纯度决定了低温吸附或低温精馏的设备投资和运行成本,因此膜分离技术也是实现低成本天然气提氦的关键。膜分离技术的核心是膜材料,开发具有自主知识产权的高性能天然气提氦膜材料与膜组件,并考察膜分离性能与低温技术耦合及经济性的关联对于我国低成本天然气提取和保障氦资源安全具有重要意义。

推荐机构: 中国化工学会

2022年度

如何突破高原极复杂地质超长深埋隧道安全建造与性能保持技术难题?

隧道工程 灾变机制 安全控制 性能保持

青藏高原山川密布,地质复杂,气象多变,严寒缺氧。川藏铁路横穿内外动力耦合作用最活跃、最复杂的青藏高原东部地形急变带,隧道群密集,长大深埋隧道众多,这些隧道面临着大位移活动断层位错、强烈大变形、极强岩爆、高温热害、高水压突水涌泥等重大工程地质灾害,隧道建造安全风险极大。与此同时,板块构造运动、自然沉积等作用引起超长深埋隧道周边环境具有显著的空间非均匀性和多相性,部分岩体物理力学特征呈现高度各项异性,这些非均匀各向异性自然效应严重影响隧道的长期正常服役。为探明川藏铁路深埋超长隧道工程在四高(高海拔、高水压、高地应力、高地温)和两强(强动力扰动与强卸荷)作用下的灾变机理,构建深埋超长隧道工程的安全建造技术体系,构建超长深埋隧道非均匀各向异性自然效应作用下超长深埋隧道的受荷模式及其结构性能劣化模式,亟需开展大型活动断裂带黏滑及蠕滑作用下隧道灾变机制与减震结构、深部复杂软岩损伤时效演化过程与大变形防治、极高地应力岩体能量赋存规律与岩爆控制、高原岩溶和构造带高压水灾变机理与防控、高地温隧道固液气多相耦合传热机理与热害防治、非均匀各向异性自然效应下超长深埋隧道劣化机理与性能保持技术等方面的研究,以解决青藏高原内外动力与工程扰动叠加条件下超长超深埋隧道的建造安全面临的重大风险难题,进而构建极复杂地质超长深埋隧道灾害风险防控理论与安全建造技术体系,形成超长深埋隧道性能保持技术。

推荐机构: 詹天佑科学技术发展基金会

2022年度

高温跨介质热/力/化学耦合机理是什么?

高温气体动力学 跨介质 热/力/化学耦合 热防护

高温跨介质热/力/化学行为源于超高速度、超高温度、超长作用时间极端环境气体与表/界面等对象的相互作用过程,并因此产生了极端物理化学反应、跨介质热/力载荷和跨尺度传热传质等基础科学难题。由于环境条件与时空尺度超越目前的经典高温气体动力学模型、实验模拟条件和基础科学认知,其科学属性包括高温气体动力学、离解与催化动力学、极端环境空气动力学、流/固耦合、材料计算设计和先进功能/结构设计等交叉领域,因此符合前沿科学问题定位。具体如:1) 空间流场组分演变、相态变化及与流动耦合问题。高温条件下气体分子会离解和电离、液体分子会破碎和气化,并会出现热非平衡及辐射效应等现象,同时高温气体基本性质认识不足,增加了分析与模拟的难度;2)跨介质的高动态多尺度响应影响问题。高温跨介质带来不同系统的质量与能量交换及能量与载荷的传递过程,存在不同介质的响应、形变及与流场的耦合过程,同时流场的高频量与结构响应相耦合,会为工程设计带来严重困难;3)结构高敏感影响参数的识别、非线性响应与防护方法问题。高温结构界面处的热流、摩阻、脉动压力及空气阻尼等参数与局部流动尺度密切相关,而材料与结构的响应亦与边界载荷和材料工艺特性相关,耦合特征呈现强非线性,为防护措施的选择带来极大难度;4)多效应耦合下的地面模拟验证方法与高精度测试表征问题。地面试验来流条件的限制使其难以模拟工程设计需要的实际运行条件,高温高速带来了空间流场相关参数测试的难度,尺度和灵敏度的限制使结构表面和内部相关量的测量异常艰难。

推荐机构: 中国空气动力学会

2022年度

共1页 转到