如何突破碳纤维复合材料在我国未来超高速轨道交通车辆装备的应用?

铁路 超高速列车 碳纤维复合材料

根据国家“双碳”发展战略部署,时速600公里高速磁浮、时速400公里及以上动车组及双层动车组为代表的超高速列车凭借高速高效、轻量智能、节能环保的优势,必将成为未来主流产品,而解决其存在的高速-能耗-低碳、轻量-安全-大载荷突出矛盾是今后发展最主要问题。因此,寻求综合性能优良的新材料、新结构,突破传统金属材料的局限 ,形成更轻、更强的材料-结构-工艺一体化核心技术解决方案,是确保高速列车领域技术引领地位、扩展国际话语权的基础,也将为国家战略新型材料在高端装备领域应用提供产业牵引。 以碳纤维为代表的国家战略新型材料,具有高强度、高模量、耐腐蚀、耐疲劳、可设计性强等优异性能,是解决高速-能耗-低碳、轻量-安全-大载荷矛盾问题、实现高速列车轻量化的绝佳选择。 1. 技术问题: (1)如何借鉴高速动车组研发流程,结合复材积木式验证方法,形成顶层设计、层层分解、仿真-试验对比分析、循环迭代的科学高效的研发流程? (2)如何建立轨道车辆行业复合材料专有数据库,打造涵盖试样-元件-组件-大部件的多层次仿真试验平台,形成完善的研发能力? (3)如何结合仿真分析指导试验策划,验证整车及各系统部件强度、刚度、防火及电磁兼容等综合性能? (4)如何基于材料-结构-工艺一体化及力学、防火、噪声、电磁兼容等功能一体化理念,开发高效低成本的材料选型技术? (5)如何基于柔性理念,兼顾产品的力学、功能性、工艺性,建立高速列车专属的铺层设计技术? (7)如何解决高速列车车体、转向架等大型部件的损伤容限、检测效率、原位检测能力及开发大型件内缺陷检测方法等问题? (8)如何基于前期积累的试验数据,持续完成复合材料工程基础数据库,形成高速列车用复合材料系统系统标准体系? (9)如何建立高速列车车体、转向架等厚大复杂部件的修复相关技术,包括修复检测、评估、工艺、体系及标准等? 2. 工艺问题: (1)如何开发基于拉挤、编织、缠绕等核心工艺及相关辅助工艺的高速列车专属成型工艺体系? (2)如何提升复合材料拉挤工艺的自动化水平,如原材料的自动化识别和上料、自动送丝及位置在线矫正、自动化浸胶以及产品在线自动检测? (3)如何解决编织工艺中轴向纤维比例低、张力不均、纤维角度偏差、编织条纹混乱等问题,保证大曲率大厚度复杂承载部件成型及高效率制造? (4)如何解决缠绕工艺中质量不均、空隙率大、树脂分布、气泡含量多等问题,提供纤维准确率高、连续性好的一体化解决方案? 3. 产线问题: (1)如何建立适合复合材料产品生产的智能化生产线,包括智能视觉识别系统、机器学习、大数据处理等配套技术? (2)如何开发针对复合材料列车总装中自动化定位、自动化钻孔铆接、自动化涂胶、自动化尺寸测量和检测的复合材料产品组装生产线? (3)如何开发薄壁多腔、低成本自动化的型材高精度拉挤与高效低成本RTM等工艺技术与配套系统装备生产线? (4)如何建立适合高速列车转向架产品的编织、缠绕工艺生产线,包括自动化模具预处理、自动化在线线型设计、自动化打磨和加工?

推荐机构: 詹天佑科学技术发展基金会

2023年度

如何实现可控核聚变的稳态燃烧?

聚变堆 氘氚聚变 燃烧等离子体 高约束运行

为获得足够大的聚变功率,并保证自持燃烧所需的足够高的氚增殖率,未来聚变堆运行需要将其芯部等离子体密度、温度和约束性能提升足够高,聚变核心综合参数“三乘积”达到1021量级,以实现稳态燃烧。在此苛刻条件下,堆芯高性能燃烧等离子体运行将面临如下挑战。 1、电流驱动问题: 如何在大电流、高密度条件下获得足够的离轴驱动电流来维持等离子体高约束运行,避开大尺度磁流体不稳定性,实现完全非感应得稳态运行已成为未来聚变堆稳态燃烧的关键核心问题。大电流高密度下的电流驱动问题可分解为两个子问题:外部电流驱动和自举电流。对于外部非感应驱动电流:一方面,外部射频波将难以深入沉积到等离子体内部从而无法获得理想的加热和电流驱动效果。中性束加热则要求更高的束能量(或高达几十万电子伏),且由于中性束注入沉积剖面较宽,单独依靠现有的中性束注入技术难以获得离轴峰化的电流驱动剖面;另一方面,随着堆芯等离子体提升,离轴驱动出目标磁剪切剖面所需非感应驱动电流更大,同时随着密度提升,外部电流驱动电流份额又会显著下降。对于驱动聚变堆目标磁剪切和自持的另一个关键参数—自举电流:大等离子体电流使得其份额显著下降,而提升密度则有助于其份额提升。注意到,提升等离子体约束性能可显著提升自举电流。如何在堆芯大电流、高密度等离子体运行条件下发展效率更高、具有技术颠覆性的外部非感应电流驱动手段获得更为理想的外部电流份额和沉积剖面,如何提升等离子体约束性能进而大幅提升自举电流份额,是聚变堆燃烧等离子体下实现电流驱动所亟待解决的两大问题。 2、加料与排灰问题: 在燃烧等离子体高密度条件下,传统加料方式难以深入等离子体内部,从而使得芯部等离子体燃烧效率显著降低。弹丸加料虽可进行深度加料,但其会导致密度剧烈波动,严重影响等离子体稳定运行。高密度等离子体燃料粒子深度加料和稳定控制已成为未来聚变堆高参数稳定运行关键核心问题之一。 另外,堆芯燃烧等离子体高参数运行期间,会产生大量氦灰,这些氦灰堆积在芯部会严重影响等离子体性能,甚至导致大破裂。在高约束条件下,尤其是内部输运垒存在时,如何在兼容高约束运行的同时排除燃烧等离子体芯部的氦灰也是未来聚变堆稳态燃烧的关键核心问题之一。 3、等离子体与壁相互作用问题 聚变堆高参数运行期间,流入刮削层的来自芯部的高热负荷(尤其是边缘局域模爆发时),会对偏滤器面向等离子体材料造成严重破坏,堆芯高参数运行期间的偏滤器高热负载问题已成为聚变堆安全稳定运行最具挑战性的问题之一。此外聚变堆运行期间会释放大量中子、可能逃逸部分高能粒子,这些将对第一壁材料和结构的稳定性造成巨大挑战。 堆芯高参数等离子体强烈作用于第一壁,会在等离子体边缘产生大量杂质,这些杂质(尤其是高Z杂质)可通过输运进入芯部等离子体,稀释主等离子体浓度,并产生大量辐射,使得主等离子体聚变效率和约束性能显著下降,如何降低壁杂质回流对芯部主等离子体的影响已成为维持聚变堆稳态燃烧的关键核心问题之一。 4、燃烧等离子体物理理解 堆芯等离子体高能量粒子(特别是α粒子)的输运和损失直接关系到核聚变反应的发生率和可持续性。实现可观的氘氚聚变反应,需要等离子体离子温度达到1亿度以上,聚变核心综合参数“三乘积”达到1021量级,国际聚变界对这种极端条件下燃烧等离子体物理的理解依旧非常不足。截至目前,国际上的聚变实验装置开展过氘氚聚变实验的仅有美国的TFTR和欧洲的JET,且实验数据库样本较少,尚未系统开展燃烧等离子体下本底粒子行为和高能离子行为的研究。探索燃烧等离子体下本底粒子输运以及同位素效应等,理解α粒子输运与损失机理,发展可靠的高能量粒子损失控制手段,是未来聚变堆所必须面临和解决的关键性科学和技术问题。 5、大尺度磁流体不稳定性控制问题 边缘局域模控制:堆芯等离子体高约束运行期间,可能产生大尺度边缘局域模,其会对偏滤器造成严重损坏,同时导致芯部约束性能瞬间下降,严重影响芯部等离子体稳定运行,而小尺度边缘局域模则有利于芯部杂质排出。如何控制大尺度边缘局域模产生,维持兼容芯部高参数运行的小尺度边缘模,已成为聚变堆稳定运行的关键核心问题之一。 高拉长比等离子体垂直不稳定性控制:堆芯等离子体高参数运行需要依托高拉长比,而高拉长比则伴随着强烈的垂直不稳定性,其会引发垂直位移事件VDEs导致大破裂,从而对聚变堆内部件造成极其严重的损坏。如何有效控制高拉长比等离子体垂直不稳定性是保证未来聚变堆安全稳定运行的最为重要问题之一。 高比压撕裂模和电阻壁模控制:聚变堆高比压运行条件下,等离子体压强会驱动(新经典)撕裂模、电阻壁模等宏观磁流体不稳定性,最终导致等离子体放电大破裂。为保证聚变堆经济效益,在高比压、高参数运行条件下,使用哪些控制手段,如何抑制撕裂模、电阻壁模等宏观不稳定性是未来聚变堆稳定运行必须解决的关键问题。 6、破裂安全防护问题 聚变堆大电流高参数等离子体一次意外所致的大破裂将伴随巨大的热负载、电磁负载和逃逸电子,其可对装置造成致命损坏,如何对预测大破裂发生,在大破裂不可避免时对破裂负荷进行有效缓解,保障装置运行安全,是聚变堆大电流高参数运行所必须考虑的重大问题。 为获得足够高的聚变功率,并保证自持燃烧所需的氚增殖率,未来聚变堆需要将其芯部等离子体温度、密度和能量约束时间提升足够高,聚变核心综合参数“三乘积”达到1021量级,以实现稳态自持的燃烧。在此苛刻条件下,堆芯等离子体稳定运行将面临严峻挑战,如电流驱动、深度加料与排灰、强烈等离子体与壁相互作用下的等离子体控制、燃烧等离子体物理理解、大尺度磁流体不稳定性控制以及破裂安全防护等。 为获得足够大的聚变功率,并保证自持燃烧所需的足够高的氚增殖率,未来聚变堆运行需要将其芯部等离子体密度、温度和约束性能提升足够高,聚变核心综合参数“三乘积”达到1021量级,以实现稳态燃烧。在此苛刻条件下,堆芯高性能燃烧等离子体运行将面临如下挑战。 1、电流驱动问题: 如何在大电流、高密度条件下获得足够的离轴驱动电流来维持等离子体高约束运行,避开大尺度磁流体不稳定性,实现完全非感应得稳态运行已成为未来聚变堆稳态燃烧的关键核心问题。大电流高密度下的电流驱动问题可分解为两个子问题:外部电流驱动和自举电流。对于外部非感应驱动电流:一方面,外部射频波将难以深入沉积到等离子体内部从而无法获得理想的加热和电流驱动效果。中性束加热则要求更高的束能量(或高达几十万电子伏),且由于中性束注入沉积剖面较宽,单独依靠现有的中性束注入技术难以获得离轴峰化的电流驱动剖面;另一方面,随着堆芯等离子体提升,离轴驱动出目标磁剪切剖面所需非感应驱动电流更大,同时随着密度提升,外部电流驱动电流份额又会显著下降。对于驱动聚变堆目标磁剪切和自持的另一个关键参数—自举电流:大等离子体电流使得其份额显著下降,而提升密度则有助于其份额提升。注意到,提升等离子体约束性能可显著提升自举电流。如何在堆芯大电流、高密度等离子体运行条件下发展效率更高、具有技术颠覆性的外部非感应电流驱动手段获得更为理想的外部电流份额和沉积剖面,如何提升等离子体约束性能进而大幅提升自举电流份额,是聚变堆燃烧等离子体下实现电流驱动所亟待解决的两大问题。 2、加料与排灰问题: 在燃烧等离子体高密度条件下,传统加料方式难以深入等离子体内部,从而使得芯部等离子体燃烧效率显著降低。弹丸加料虽可进行深度加料,但其会导致密度剧烈波动,严重影响等离子体稳定运行。高密度等离子体燃料粒子深度加料和稳定控制已成为未来聚变堆高参数稳定运行关键核心问题之一。 另外,堆芯燃烧等离子体高参数运行期间,会产生大量氦灰,这些氦灰堆积在芯部会严重影响等离子体性能,甚至导致大破裂。在高约束条件下,尤其是内部输运垒存在时,如何在兼容高约束运行的同时排除燃烧等离子体芯部的氦灰也是未来聚变堆稳态燃烧的关键核心问题之一。 3、等离子体与壁相互作用问题 聚变堆高参数运行期间,流入刮削层的来自芯部的高热负荷(尤其是边缘局域模爆发时),会对偏滤器面向等离子体材料造成严重破坏,堆芯高参数运行期间的偏滤器高热负载问题已成为聚变堆安全稳定运行最具挑战性的问题之一。此外聚变堆运行期间会释放大量中子、可能逃逸部分高能粒子,这些将对第一壁材料和结构的稳定性造成巨大挑战。 堆芯高参数等离子体强烈作用于第一壁,会在等离子体边缘产生大量杂质,这些杂质(尤其是高Z杂质)可通过输运进入芯部等离子体,稀释主等离子体浓度,并产生大量辐射,使得主等离子体聚变效率和约束性能显著下降,如何降低壁杂质回流对芯部主等离子体的影响已成为维持聚变堆稳态燃烧的关键核心问题之一。 4、燃烧等离子体物理理解 堆芯等离子体高能量粒子(特别是α粒子)的输运和损失直接关系到核聚变反应的发生率和可持续性。实现可观的氘氚聚变反应,需要等离子体离子温度达到1亿度以上,聚变核心综合参数“三乘积”达到1021量级,国际聚变界对这种极端条件下燃烧等离子体物理的理解依旧非常不足。截至目前,国际上的聚变实验装置开展过氘氚聚变实验的仅有美国的TFTR和欧洲的JET,且实验数据库样本较少,尚未系统开展燃烧等离子体下本底粒子行为和高能离子行为的研究。探索燃烧等离子体下本底粒子输运以及同位素效应等,理解α粒子输运与损失机理,发展可靠的高能量粒子损失控制手段,是未来聚变堆所必须面临和解决的关键性科学和技术问题。 5、大尺度磁流体不稳定性控制问题 边缘局域模控制:堆芯等离子体高约束运行期间,可能产生大尺度边缘局域模,其会对偏滤器造成严重损坏,同时导致芯部约束性能瞬间下降,严重影响芯部等离子体稳定运行,而小尺度边缘局域模则有利于芯部杂质排出。如何控制大尺度边缘局域模产生,维持兼容芯部高参数运行的小尺度边缘模,已成为聚变堆稳定运行的关键核心问题之一。 高拉长比等离子体垂直不稳定性控制:堆芯等离子体高参数运行需要依托高拉长比,而高拉长比则伴随着强烈的垂直不稳定性,其会引发垂直位移事件VDEs导致大破裂,从而对聚变堆内部件造成极其严重的损坏。如何有效控制高拉长比等离子体垂直不稳定性是保证未来聚变堆安全稳定运行的最为重要问题之一。 高比压撕裂模和电阻壁模控制:聚变堆高比压运行条件下,等离子体压强会驱动(新经典)撕裂模、电阻壁模等宏观磁流体不稳定性,最终导致等离子体放电大破裂。为保证聚变堆经济效益,在高比压、高参数运行条件下,使用哪些控制手段,如何抑制撕裂模、电阻壁模等宏观不稳定性是未来聚变堆稳定运行必须解决的关键问题。 6、破裂安全防护问题 聚变堆大电流高参数等离子体一次意外所致的大破裂将伴随巨大的热负载、电磁负载和逃逸电子,其可对装置造成致命损坏,如何对预测大破裂发生,在大破裂不可避免时对破裂负荷进行有效缓解,保障装置运行安全,是聚变堆大电流高参数运行所必须考虑的重大问题。

推荐机构: 中国能源研究会

2023年度

水库群运行期如何实现汛限水位联合优化调控?

水库群 运行期 汛限水位 联合优化

汛限水位是水库在汛期允许兴利蓄水的上限水位,在防洪中具有法定地位,是协调水库防洪与兴利的关键参数,直接影响水库效益发挥。近年来,水旱灾害防御和应急管理部门强化底线思维,加强了水库汛限水位的监管工作,出现了一些过度强调汛期水库运行水位不得超过汛限水位的情况,导致相当多的水库面临汛期大量弃水、汛后又无水可蓄的窘况。在加大了防洪安全的保障度的同时,不利于发挥水库的综合利用效益。 据文献调研,西方发达国家水库设计和监管都没有专门设置汛限水位这个特征参数。设计水库水位(库容)分别为死水位(死库容)、最低消落水位(缓冲库容)、正常蓄水位(兴利库容)、防洪设计水位(防洪库容)。水库业主依据法律法规和水文气象预报信息,在确保大坝和防洪安全的前提下运行调度,获取水库综合利用效益并承担事故赔偿风险。 我国地处亚洲季风区,水资源时空分布不均,不仅洪涝灾害频发,同时又是一个严重缺水的国家。近年来,我国许多省份发生旱情,特别是2022年长江流域发生历史性特大干旱,全国共有5245.2万人次受灾,因旱需生活救助758.5万人次,农作物受灾面积6090.2千公顷,直接经济损失512.8亿元,给社会经济造成了较大影响,引起社会各界的高度关注,也促发水利行业深入思考如何更好地发挥已建众多大型水库群的水资源综合利用效益。 根据《2022年度长江流域水工程联合调度运用计划》,长江流域纳入联合调度的水工程共计111座,其中:控制性水库51座,总调节库容1160亿立方米、总防洪库容705亿立方米。我国汛期洪水约占全年总径流的64%,目前仅其中的50%被调控,因此洪水资源化潜力巨大。 洪水资源化是针对传统水利与做法而提出的兴利与除害结合、防洪与抗旱并举的治水理念在新时期的一个具体体现,该概念的提出具有崭新的时代特征,是治水思想在实践中不断开拓创新的理论结晶。 目前,经过几十年的科技攻关和技术进步,我国的水文气象监测预报、通讯、水库调度决策水平已经处于国际前列。随着具有预报、预警、预演、预案功能的智慧水利体系和数字孪生流域的持续构建,可以为水库汛期水位动态控制、联合优化调度提供强有力的技术支撑。具体体现在:(1)我国气象监测预测预报水平不断提高。2022年4月20日,中国气象报报道:“2021年,我国强对流天气预警时间提前至40min,暴雨预警准确率达到90%。气象预报业务体系不断完善,多种以精准、及时为特点,全面应用新技术的预报产品实现业务化。从短时临近预报到短期预报再到中期和延伸期预报、气候预测,预报预测业务体系全方位升级,小到捕获雷暴大风动态,大到预测未来天气趋势,无缝隙预报预测能力正逐渐增强”。(2)我国水文监测预报水平不断提高。我国南方主要江河的洪水预报精准度由80%提升到90%以上,北方主要江河的洪水预报精准度由50%提升到70%以上。水利部现在可获取未来7d以上的降雨数值预报,通过与洪水预报系统耦合,可制作未来10d的洪水预测预报,能有效提高未来2d的预报精度,未来3-5d的预测成果可用来研判未来江河洪水发展趋势。(3)调度决策信息化水平不断提高。通过国家防汛抗旱指挥系统工程等重大项目建设,基本建成了大江大河洪水预报体系,编制了100座防洪骨干大型水库和33处重点蓄滞洪区的洪水预报方案,支撑了大江大河重点水利工程的科学调度。气象水文监测、预报防洪调度能力和服务水平的提高,大大强化了防汛抗旱信息采集、传输、处理的及时性、可靠性,提高了洪水预报预警的准确性、时效性,提升了防灾减灾调度指挥决策的科学性、主动性。 另一方面,现有的水库调度、水库群联合调度及汛期运行水位动态控制技术,均源于单库的汛限水位设计与运用研究成果,存在未考虑上游水库调蓄影响、调度控制脱节、响应速度慢等问题,不能有效支撑洪水资源化相关需求。 现有的水库群联合调度及汛期运行水位动态控制技术主要基于水文、气象等预报信息和水库补偿特性,在确保水库及下游防洪安全条件下,充分利用水库防洪与兴利的重叠库容,提高水库的综合效益和水资源利用率。主要集中于三个方面:一是通过预报调度方式抬高汛限水位,二是汛限水位动态控制,三是水库群防洪库容的分配。 大型水库群联合调度的关键技术是如何实现防洪、发电、水资源高效利用的多目标联合调度问题,由于优化状态搜索规模相应也极大,更易引发维数灾等问题,现有方法尚很难直接对其进行建模高效求解。 通过水库群运行期汛限水位联合优化调度技术充分发挥大型水库群联合运行调度作用,实现洪水资源化,在不降低原有防洪标准的前提下,提高水库汛末的蓄满率,可有效权衡防洪和抗旱之间的矛盾关系,缓解区域性严重缺水的状况,实现综合利用效益的最大化;另一方面,可充分利用现有的水利工程条件,完善调度方案和操作规程,达到防洪减灾、减少弃水、增加供水的目的,是实现水利发展的一条非工程措施,为加快水利发展提供“软实力”。 综上所述,本问题的研发是面向水旱灾害防御、水电清洁能源、水资源综合利用以及水生态环境保护的重大国家需求,具有重大的理论意义和工程应用价值。 近年来,水旱灾害防御和应急管理部门强化底线思维,加强了水库汛限水位的监管工作,出现了一些过度强调汛期水库运行水位不得超过汛限水位的情况,导致相当多的水库面临汛期大量弃水、汛后又无水可蓄的窘况。在加大了防洪安全的保障度的同时,不利于发挥水库的综合利用效益。 近年来,我国许多省份发生旱情,特别是2022年长江流域发生历史性特大干旱,给社会经济造成了较大影响,引起社会各界的高度关注,也促发水利行业深入思考如何更好地发挥已建众多大型水库群的水资源综合利用效益。 目前,经过几十年的科技攻关和技术进步,我国的水文气象监测预报、通讯、水库调度决策水平已经处于国际前列。随着具有预报、预警、预演、预案功能的智慧水利体系和数字孪生流域的持续构建,可以为水库汛期水位动态控制、联合优化调度提供强有力的技术支撑。 但现有的水库调度、水库群联合调度及汛期运行水位动态控制技术,均源于单库的汛限水位设计与运用研究成果,存在未考虑上游水库调蓄影响、调度控制脱节、响应速度慢等问题,不能有效支撑洪水资源化相关需求。 大型水库群联合调度的关键技术是如何实现防洪、发电、水资源高效利用的多目标联合调度问题,由于优化状态搜索规模相应也极大,更易引发维数灾等问题,现有方法尚很难直接对其进行建模高效求解。 通过水库群运行期汛限水位联合优化调度技术充分发挥大型水库群联合运行调度作用,实现洪水资源化,在不降低原有防洪标准的前提下,提高水库汛末的蓄满率,可有效权衡防洪和抗旱之间的矛盾关系,缓解区域性严重缺水的状况,实现综合利用效益的最大化;另一方面,可充分利用现有的水利工程条件,完善调度方案和操作规程,达到防洪减灾、减少弃水、增加供水的目的,是实现水利发展的一条非工程措施,为加快水利发展提供“软实力”。 综上所述,本问题的研发是面向水旱灾害防御、水电清洁能源、水资源综合利用以及水生态环境保护的重大国家需求,具有重大的理论意义和工程应用价值。

推荐机构: 中国水利学会

2023年度

如何实现在原子、电子本征尺度上的微观动力学实时、实空间成像?

超快动力学 阿秒电子显微 阿秒时间分辨率 皮米空间分辨率

电子显微镜可以深入了解物质的最小细节,例如可以揭示材料的原子结构、蛋白质的结构或病毒颗粒的形状。然而,自然界中的大多数材料都不是静止的,而是一直在相互作用、移动和重塑。比如光与物质之间的相互作用在植物、光学元件、太阳能电池、显示器或激光器中普遍存在,其相互作用的内在本质是由光场驱动的电子运动所决定的,发生在飞秒(10-15秒)甚至阿秒(10-18秒)的超快时间尺度上以及皮米(10-12米)的超小空间尺度上。因此,为了对复杂材料中功能的微观粒子起源进行直接可视化,需要同时具备“皮米空间分辨率”与“阿秒时间分辨率”的阿秒电子成像技术,从而实现对原子、电子的运动及其相互作用规律的实时、实空间观测。然而,目前超快电子成像技术受到发射度大、亮度低、以及时间抖动、光发射电子固有的能量弥散等限制难以突破飞秒-纳米级时空分辨瓶颈。这些难题的解决可提供原子、电子在本征尺度上的微观动力学直接时空成像,将有力推动我国基础物理、新型光电子器件、超快化学、生物安全 、量子科学、清洁能源等重要科技前沿领域的发展,为我国基础研究的原始创新突破提供有效支撑。

推荐机构: 中国光学工程学会

2023年度

共22页 转到