以电-氢-碳耦合方式协同推进新能源大规模开发与煤电绿色转型

电-氢-碳耦合 煤电转型 新能源消纳 绿色化工

碳排放过量导致的气候变化问题,本质上是化石能源过度开采导致的碳循环失衡,释放到大气中的二氧化碳大于地球系统固化的二氧化碳。解决这一问题有“一减一加”两个途径,一是以清洁能源代替化石能源,减少能源系统碳排放;二是捕集二氧化碳后采用人工合成方式制取甲醇等有机物加以利用,增加人工碳固化。 构建零碳排放的能源系统是实现“一减一加”的基础。在零碳排放能源系统中,可再生能源作为能量的来源,碳元素和氢元素作为能量载体循环利用,随着价态变化实现能量的吸收和释放,将随机波动的风光新能源转化为安全可控的能源产品。通过构建零碳排放能源系统,能够以“先立后破”为原则实现中国能源供应从以煤炭为主过渡到可再生能源为主的,以最高安全、最小代价使得碳循环重回平衡。具体来看以新能源发电为能量来源,以水、空气和煤电排放的二氧化碳等为原料的绿氢、绿氨、绿甲醇等工艺可以实现电-氢-碳耦合发展,为协同解决煤电绿色低碳转型、新能源大规模开发消纳等问题提供了系统性的解决方案。 目前,电-氢-碳协同仍处于理论研究阶段,发展模式尚不明确,需要针对新能源发电、煤电与绿氢、绿氨、绿甲醇等的耦合方式开展研究。同时,更高效率的电制氢技术、可调节、可中断与新能源灵活互动的柔性化工技术、氢氨发电技术等一系列技术问题也亟待解决。

推荐机构: 中国电机工程学会

2024年度

大尺寸半导体硅单晶品质管控理论与技术

半导体硅单晶 直拉法 晶体生长控制理论 品质管控技术

硅单晶材料在集成电路产业链中占据首要地位,硅单晶的品质对集成电路芯片性能有着重要的影响。硅单晶制备过程是多场耦合、多相变、大空间、高温、高真空、高洁净的精密生产过程,此过程决定了硅单晶的品质。如何在复杂的制备过程中,通过调控宏观工艺参数,实现对硅单晶微观品质的精准管控,是硅单晶制备产业界和学术界持续关注的难题。通过发展新理论、研究新方法、形成新工艺,实现对硅单晶生长过程及品质的有效管控,达到稳定提升硅单晶材料品质的目的,以满足不断演进的集成电路芯片制程要求。这项技术对建立和发展我国半导体硅单晶产业,实现生产过程的科学化、高效化、实用化,形成市场竞争优势具有重要的理论价值和现实意义。 半导体硅单晶是制造集成电路芯片最重要的基础性材料,90%以上的集成电路芯片都是制作在硅单晶上,硅单晶的制备在集成电路产业链中占据首要地位。半导体硅单晶的品质主要包括:直径尺寸、长度等宏观品质;氧碳含量、晶体缺陷、杂质浓度等微观指标,这些决定了硅单晶制备效率和后端集成电路芯片的性能,同时,也反映了一个国家集成电路产业的发展水平。 目前,半导体硅单晶材料制备产业仍具有高度集中的特点,以直径12英寸硅片为例,日、德、韩等境外5家企业占据90%以上的全球市场份额,形成了世界范围的垄断。代表当今集成电路芯片主流制造水平的20nm及以下制程工艺所要求的高品质、大尺寸半导体硅片,我国主要依赖进口。半导体硅单晶材料从技术研发、产业生产到市场销售具有投资规模大、建设周期长、技术门槛高、产业垄断强的突出特点,成为制约我国集成电路产业发展的关键壁垒之一。

推荐机构: 中国自动化学会

2024年度

应用AI眼底血管健康技术促进相关代谢疾病分级诊疗

AI眼底血管健康技术 代谢疾病 分级诊疗

代谢性疾病是一类涉及人体内物质代谢异常的疾病,主要包括糖、脂肪、蛋白质等物质的代谢紊乱。这类疾病包括糖尿病、高血压、高血脂、冠心病和肥胖症等。定期进行眼底检查与AI评估有助于及早发现和监测这些代谢疾病,从而减少对患者视力和生活质量的损害。然而,目前眼底血管健康检查技术具有较强的专业性,存在一些限制,如仪器设备的限制、医生技术和经验的限制,以及患者的经济负担等。AI技术在眼底血管健康检查的应用,极大提高了代谢性疾病的诊疗效率。近年来,基于眼底图像的人工智能技术已被开发用于评估心血管病的发病风险。这种技术具有即时、无创、易操作和成本低等优点,能够快速准确地评估个体的心血管病风险。本产业技术问题聚焦我国如何应用AI眼底血管健康技术促进相关代谢疾病分级诊疗。目标是实现不同医疗卫生服务机构疾病诊疗效率一致性,推进代谢疾病早期诊断和风险评估。通过优化分级诊疗路径,AI眼底血管健康技术有助于实现医疗资源的合理分配,提高医疗服务的效率和质量。 目前,综合医院全科医学科已经在基层医疗机构中建立了广泛协作网络。这一网络的优势在于,它能够整合先进的AI眼底血管健康筛查技术,致力于将这些技术无缝嵌入基层医疗服务中,同时确保不会给基层医疗机构带来额外的经济和工作负担。构建一套完整的AI眼底血管健康技术实施策略,以提高医疗服务的效率和质量。

推荐机构: 中华医学会

2024年度

如何将脑机接口技术应用到临床医疗中?

脑机接口 脑疾病 脑电信号

脑机接口系统旨在建立一种脑与外部设备之间直接的双向交流通道,以同时实现对外部设备的控制和对脑的调控,从而达到监测脑状态、治疗脑疾病、增强脑功能等目的。 按照信息采集的方式,脑机接口可以分为侵入式和非侵入式两种技术路径。 侵入式脑机接口直接与神经元紧密接触,在神经信号质量和神经调控精度等关键性能上有着天然的优势,但植入手术对大脑的创伤和植入器件长期在体的安全性等问题是当前瓶颈。侵入式脑机接口是一个复杂的系统,涉及电极、芯片、算法、植入等多种关键技术,包括:生物器件集成电路制造技术,用于提高脑机接口记录带宽;超薄超柔电极制备技术,实现海量神经活动信号的长期稳定获取;神经信号模拟域特征提取技术,实现海量神经信号的实时探测、处理和压缩,大幅降低数字神经网络的规模和功耗;微创植入技术,自动躲避血管,减少植入创伤。 非侵入式脑机接口,是目前最常采用的脑信号采集路径,也是在商业化探索中更有望率先落地的技术路径。虽然采集的信号强度远远弱于侵入式脑机接口方案,信噪比低,时空分辨率更模糊,但因为这种方案不会对脑组织造成创口伤害,因此在普惠式应用方面更有潜力。非侵入式脑机接口当下的研究重点,一方面在于信号监测和分析设备及算法的改进、放大器的尺寸、如何降低信号噪声和提高信号可用性;另一方面在于与多种潜在应用场景深度结合,探索应用潜力。非侵入式脑机接口的潜力在于探索在更多场景中的应用,比如专注力提升、解决失眠问题、自闭症干预治疗、阿尔兹海默症延缓等等。此外,将非侵入式脑机接口与VR、机械外骨骼等外界技术手段结合,在瘫痪康复治疗领域也有着巨大的应用前景。 虽然脑机接口技术的临床应用前景广阔,但在性能、精准、高效、安全等方面仍存在众多挑战,例如:开发长期稳定、生物兼容、时空分辨率高的神经信号采集及神经刺激硬件;开发精确、稳定的脑机接口解码算法,以达到对各种复杂外部设备的精细控制;开发精准、鲁棒的脑机接口调控算法,以达到对各种大脑状态有效、安全的调控;研究脑接机口技术的伦理与数据安全等,真正的脑机接口离应用临床还有很长一段路要走。

推荐机构: 中国图书馆学会

2023年度

如何探明更高速度轮轨系统耦合机理及能量场分布特征?

轮轨耦合系统 更高速度 轮轨系统能量场 轮轨系统耗能机理 智能诊断

列车运营速度是衡量一个国家铁路发展水平和工业科技水平的重要指标之一,当前世界各国为了提高影响力和竞争力,多个国家已计划或规划进一步提高列车运营速度。而轮轨系统耦合机理是制约轮轨制式交通运营速度、安全舒适性进一步提升的关键科学问题。在更高速度条件下,轮轨瞬态滚动接触行为变的更为复杂,存在强摩擦力、多环境能量场交互、高应变率载荷等复杂效应。轮轨系统复杂的耦合接触行为将导致轮轨系统能量场发生不可预知的变化,并在轮轨系统能量场交互机制作用下,产生车辆-轨道系统能量重构现象,影响车辆和轨道系统的能量耗散响应,若能量耗散不合理,将导致车辆和轨道系统关键部件的伤损,严重影响列车运行的安全性。因此如何探明更高速度条件下的轮轨耦合机理及能量场分布特征是提高运营速度、提升安全性和舒适性,并降低车辆和轨道系统部件伤损的关键核心科学问题,是完善我国高速铁路全面系统正向设计理论和方法体系,研制我国新一代高速列车,提升我国铁路行业国际竞争地位,彰显国家工业科技水平和综合国力的核心基础。

推荐机构: 中国铁道学会

2023年度

共22页 转到