问题类型
全部 前沿科学问题 工程技术难题 产业与技术问题
学科领域
全部 数理化基础科学 生命健康 地球科学 生态环境 制造科技 信息科技 先进材料 资源能源 农业科技 空天科技 其他
征集年度
全部 2024 2023 2022 2021 2020 2019 2018
新能源基地 荒漠化地区 特高压输电 安全送出
我国是世界上荒漠化面积最大、受风沙危害最重的国家之一,全国荒漠化土地约占国土面积的1/4。国家提出以沙漠、戈壁、荒漠为重点建设数亿千瓦大型风光基地,推动构建以清洁低碳能源为主体的能源供应体系,加快能源绿色低碳转型。 由于荒漠新能源基地所在地区大多处于电网末端,电网支撑弱,经济欠发达,本地负荷小,新能源基地缺少大电网支撑,安全运行面临挑战,无法就地消纳。 为此,要将荒漠化地区改造成为绿色能源基地,亟需解决如何在缺乏电网支撑的情况下实现数亿千瓦荒漠新能源发电基地安全稳定送出的关键问题。
推荐机构: 中国电机工程学会
2023年度
长周期储能技术 新型电力系统 电力电量平衡 大容量高效率
由于新能源发电出力波动大、可靠出力低,随着新能源装机占比不断扩大,以及煤电的逐步退出,新型电力系统面临严峻的电力电量平衡及保供挑战。大规模、长周期储能技术可以实现大规模能量的长时间存储、转移和转换,对于提升新型电力系统长周期灵活性及充裕性具有重要作用,同时也关系着未来系统的演化路径和电网形态,但目前国内外新能源发展场景、路径有很大差异,长周期储能技术的定义、需求也不同,当前的储能类型多样,但满足我国新型电力系统建设的长周期储能技术尚无明确答案,,适用于新型电力系统的大容量、高效率、具有成本经济性的长周期储能方式还一直在探索与研究之中,大规模工程应用和实践尚未开展。
聚变堆 氘氚聚变 燃烧等离子体 高约束运行
为获得足够大的聚变功率,并保证自持燃烧所需的足够高的氚增殖率,未来聚变堆运行需要将其芯部等离子体密度、温度和约束性能提升足够高,聚变核心综合参数“三乘积”达到1021量级,以实现稳态燃烧。在此苛刻条件下,堆芯高性能燃烧等离子体运行将面临如下挑战。 1、电流驱动问题: 如何在大电流、高密度条件下获得足够的离轴驱动电流来维持等离子体高约束运行,避开大尺度磁流体不稳定性,实现完全非感应得稳态运行已成为未来聚变堆稳态燃烧的关键核心问题。大电流高密度下的电流驱动问题可分解为两个子问题:外部电流驱动和自举电流。对于外部非感应驱动电流:一方面,外部射频波将难以深入沉积到等离子体内部从而无法获得理想的加热和电流驱动效果。中性束加热则要求更高的束能量(或高达几十万电子伏),且由于中性束注入沉积剖面较宽,单独依靠现有的中性束注入技术难以获得离轴峰化的电流驱动剖面;另一方面,随着堆芯等离子体提升,离轴驱动出目标磁剪切剖面所需非感应驱动电流更大,同时随着密度提升,外部电流驱动电流份额又会显著下降。对于驱动聚变堆目标磁剪切和自持的另一个关键参数—自举电流:大等离子体电流使得其份额显著下降,而提升密度则有助于其份额提升。注意到,提升等离子体约束性能可显著提升自举电流。如何在堆芯大电流、高密度等离子体运行条件下发展效率更高、具有技术颠覆性的外部非感应电流驱动手段获得更为理想的外部电流份额和沉积剖面,如何提升等离子体约束性能进而大幅提升自举电流份额,是聚变堆燃烧等离子体下实现电流驱动所亟待解决的两大问题。 2、加料与排灰问题: 在燃烧等离子体高密度条件下,传统加料方式难以深入等离子体内部,从而使得芯部等离子体燃烧效率显著降低。弹丸加料虽可进行深度加料,但其会导致密度剧烈波动,严重影响等离子体稳定运行。高密度等离子体燃料粒子深度加料和稳定控制已成为未来聚变堆高参数稳定运行关键核心问题之一。 另外,堆芯燃烧等离子体高参数运行期间,会产生大量氦灰,这些氦灰堆积在芯部会严重影响等离子体性能,甚至导致大破裂。在高约束条件下,尤其是内部输运垒存在时,如何在兼容高约束运行的同时排除燃烧等离子体芯部的氦灰也是未来聚变堆稳态燃烧的关键核心问题之一。 3、等离子体与壁相互作用问题 聚变堆高参数运行期间,流入刮削层的来自芯部的高热负荷(尤其是边缘局域模爆发时),会对偏滤器面向等离子体材料造成严重破坏,堆芯高参数运行期间的偏滤器高热负载问题已成为聚变堆安全稳定运行最具挑战性的问题之一。此外聚变堆运行期间会释放大量中子、可能逃逸部分高能粒子,这些将对第一壁材料和结构的稳定性造成巨大挑战。 堆芯高参数等离子体强烈作用于第一壁,会在等离子体边缘产生大量杂质,这些杂质(尤其是高Z杂质)可通过输运进入芯部等离子体,稀释主等离子体浓度,并产生大量辐射,使得主等离子体聚变效率和约束性能显著下降,如何降低壁杂质回流对芯部主等离子体的影响已成为维持聚变堆稳态燃烧的关键核心问题之一。 4、燃烧等离子体物理理解 堆芯等离子体高能量粒子(特别是α粒子)的输运和损失直接关系到核聚变反应的发生率和可持续性。实现可观的氘氚聚变反应,需要等离子体离子温度达到1亿度以上,聚变核心综合参数“三乘积”达到1021量级,国际聚变界对这种极端条件下燃烧等离子体物理的理解依旧非常不足。截至目前,国际上的聚变实验装置开展过氘氚聚变实验的仅有美国的TFTR和欧洲的JET,且实验数据库样本较少,尚未系统开展燃烧等离子体下本底粒子行为和高能离子行为的研究。探索燃烧等离子体下本底粒子输运以及同位素效应等,理解α粒子输运与损失机理,发展可靠的高能量粒子损失控制手段,是未来聚变堆所必须面临和解决的关键性科学和技术问题。 5、大尺度磁流体不稳定性控制问题 边缘局域模控制:堆芯等离子体高约束运行期间,可能产生大尺度边缘局域模,其会对偏滤器造成严重损坏,同时导致芯部约束性能瞬间下降,严重影响芯部等离子体稳定运行,而小尺度边缘局域模则有利于芯部杂质排出。如何控制大尺度边缘局域模产生,维持兼容芯部高参数运行的小尺度边缘模,已成为聚变堆稳定运行的关键核心问题之一。 高拉长比等离子体垂直不稳定性控制:堆芯等离子体高参数运行需要依托高拉长比,而高拉长比则伴随着强烈的垂直不稳定性,其会引发垂直位移事件VDEs导致大破裂,从而对聚变堆内部件造成极其严重的损坏。如何有效控制高拉长比等离子体垂直不稳定性是保证未来聚变堆安全稳定运行的最为重要问题之一。 高比压撕裂模和电阻壁模控制:聚变堆高比压运行条件下,等离子体压强会驱动(新经典)撕裂模、电阻壁模等宏观磁流体不稳定性,最终导致等离子体放电大破裂。为保证聚变堆经济效益,在高比压、高参数运行条件下,使用哪些控制手段,如何抑制撕裂模、电阻壁模等宏观不稳定性是未来聚变堆稳定运行必须解决的关键问题。 6、破裂安全防护问题 聚变堆大电流高参数等离子体一次意外所致的大破裂将伴随巨大的热负载、电磁负载和逃逸电子,其可对装置造成致命损坏,如何对预测大破裂发生,在大破裂不可避免时对破裂负荷进行有效缓解,保障装置运行安全,是聚变堆大电流高参数运行所必须考虑的重大问题。 为获得足够高的聚变功率,并保证自持燃烧所需的氚增殖率,未来聚变堆需要将其芯部等离子体温度、密度和能量约束时间提升足够高,聚变核心综合参数“三乘积”达到1021量级,以实现稳态自持的燃烧。在此苛刻条件下,堆芯等离子体稳定运行将面临严峻挑战,如电流驱动、深度加料与排灰、强烈等离子体与壁相互作用下的等离子体控制、燃烧等离子体物理理解、大尺度磁流体不稳定性控制以及破裂安全防护等。 为获得足够大的聚变功率,并保证自持燃烧所需的足够高的氚增殖率,未来聚变堆运行需要将其芯部等离子体密度、温度和约束性能提升足够高,聚变核心综合参数“三乘积”达到1021量级,以实现稳态燃烧。在此苛刻条件下,堆芯高性能燃烧等离子体运行将面临如下挑战。 1、电流驱动问题: 如何在大电流、高密度条件下获得足够的离轴驱动电流来维持等离子体高约束运行,避开大尺度磁流体不稳定性,实现完全非感应得稳态运行已成为未来聚变堆稳态燃烧的关键核心问题。大电流高密度下的电流驱动问题可分解为两个子问题:外部电流驱动和自举电流。对于外部非感应驱动电流:一方面,外部射频波将难以深入沉积到等离子体内部从而无法获得理想的加热和电流驱动效果。中性束加热则要求更高的束能量(或高达几十万电子伏),且由于中性束注入沉积剖面较宽,单独依靠现有的中性束注入技术难以获得离轴峰化的电流驱动剖面;另一方面,随着堆芯等离子体提升,离轴驱动出目标磁剪切剖面所需非感应驱动电流更大,同时随着密度提升,外部电流驱动电流份额又会显著下降。对于驱动聚变堆目标磁剪切和自持的另一个关键参数—自举电流:大等离子体电流使得其份额显著下降,而提升密度则有助于其份额提升。注意到,提升等离子体约束性能可显著提升自举电流。如何在堆芯大电流、高密度等离子体运行条件下发展效率更高、具有技术颠覆性的外部非感应电流驱动手段获得更为理想的外部电流份额和沉积剖面,如何提升等离子体约束性能进而大幅提升自举电流份额,是聚变堆燃烧等离子体下实现电流驱动所亟待解决的两大问题。 2、加料与排灰问题: 在燃烧等离子体高密度条件下,传统加料方式难以深入等离子体内部,从而使得芯部等离子体燃烧效率显著降低。弹丸加料虽可进行深度加料,但其会导致密度剧烈波动,严重影响等离子体稳定运行。高密度等离子体燃料粒子深度加料和稳定控制已成为未来聚变堆高参数稳定运行关键核心问题之一。 另外,堆芯燃烧等离子体高参数运行期间,会产生大量氦灰,这些氦灰堆积在芯部会严重影响等离子体性能,甚至导致大破裂。在高约束条件下,尤其是内部输运垒存在时,如何在兼容高约束运行的同时排除燃烧等离子体芯部的氦灰也是未来聚变堆稳态燃烧的关键核心问题之一。 3、等离子体与壁相互作用问题 聚变堆高参数运行期间,流入刮削层的来自芯部的高热负荷(尤其是边缘局域模爆发时),会对偏滤器面向等离子体材料造成严重破坏,堆芯高参数运行期间的偏滤器高热负载问题已成为聚变堆安全稳定运行最具挑战性的问题之一。此外聚变堆运行期间会释放大量中子、可能逃逸部分高能粒子,这些将对第一壁材料和结构的稳定性造成巨大挑战。 堆芯高参数等离子体强烈作用于第一壁,会在等离子体边缘产生大量杂质,这些杂质(尤其是高Z杂质)可通过输运进入芯部等离子体,稀释主等离子体浓度,并产生大量辐射,使得主等离子体聚变效率和约束性能显著下降,如何降低壁杂质回流对芯部主等离子体的影响已成为维持聚变堆稳态燃烧的关键核心问题之一。 4、燃烧等离子体物理理解 堆芯等离子体高能量粒子(特别是α粒子)的输运和损失直接关系到核聚变反应的发生率和可持续性。实现可观的氘氚聚变反应,需要等离子体离子温度达到1亿度以上,聚变核心综合参数“三乘积”达到1021量级,国际聚变界对这种极端条件下燃烧等离子体物理的理解依旧非常不足。截至目前,国际上的聚变实验装置开展过氘氚聚变实验的仅有美国的TFTR和欧洲的JET,且实验数据库样本较少,尚未系统开展燃烧等离子体下本底粒子行为和高能离子行为的研究。探索燃烧等离子体下本底粒子输运以及同位素效应等,理解α粒子输运与损失机理,发展可靠的高能量粒子损失控制手段,是未来聚变堆所必须面临和解决的关键性科学和技术问题。 5、大尺度磁流体不稳定性控制问题 边缘局域模控制:堆芯等离子体高约束运行期间,可能产生大尺度边缘局域模,其会对偏滤器造成严重损坏,同时导致芯部约束性能瞬间下降,严重影响芯部等离子体稳定运行,而小尺度边缘局域模则有利于芯部杂质排出。如何控制大尺度边缘局域模产生,维持兼容芯部高参数运行的小尺度边缘模,已成为聚变堆稳定运行的关键核心问题之一。 高拉长比等离子体垂直不稳定性控制:堆芯等离子体高参数运行需要依托高拉长比,而高拉长比则伴随着强烈的垂直不稳定性,其会引发垂直位移事件VDEs导致大破裂,从而对聚变堆内部件造成极其严重的损坏。如何有效控制高拉长比等离子体垂直不稳定性是保证未来聚变堆安全稳定运行的最为重要问题之一。 高比压撕裂模和电阻壁模控制:聚变堆高比压运行条件下,等离子体压强会驱动(新经典)撕裂模、电阻壁模等宏观磁流体不稳定性,最终导致等离子体放电大破裂。为保证聚变堆经济效益,在高比压、高参数运行条件下,使用哪些控制手段,如何抑制撕裂模、电阻壁模等宏观不稳定性是未来聚变堆稳定运行必须解决的关键问题。 6、破裂安全防护问题 聚变堆大电流高参数等离子体一次意外所致的大破裂将伴随巨大的热负载、电磁负载和逃逸电子,其可对装置造成致命损坏,如何对预测大破裂发生,在大破裂不可避免时对破裂负荷进行有效缓解,保障装置运行安全,是聚变堆大电流高参数运行所必须考虑的重大问题。
推荐机构: 中国能源研究会
冲击地压煤层 智能防冲 主动解危 卸压开采
煤炭是我国能源安全的“压舱石”,冲击地压已成为制约我国煤矿安全生产和产能释放的头号杀手,而且随着开采深度的不断增加,其影响越发凸显,将严重影响我国能源战略安全和国民经济持续健康发展。因此,如何突破冲击地压煤层开采技术瓶颈,实现安全、智能、高效开采是迫切需要解决的关键工程技术难题。
推荐机构: 中国煤炭学会