如何解决稀土基体中痕量杂质的高效分离问题,突破高纯稀土材料工程化制备技术及装备?

高纯稀土化合物 高纯稀土金属 提纯 工程化

稀土元素因其特殊的4f亚层电子结构,呈现出丰富而独特的磁、光、电、催化等功能性质,被誉为“现代工业维生素”和“21世纪新材料宝库”,已成为全球公认的重要战略资源。高纯稀土材料作为稀土功能材料的基础物质保障,可以确保从原子、电子层次研究稀土材料组织结构与性能关系,体现稀土元素本征性质。随着稀土在高科技领域的开发应用研究不断取得重大突破,稀土功能材料对稀土材料的纯度提出了更高的要求。例如大功率光纤激光器要求镱等稀土化合物纯度达到5N-6N;闪烁晶体要求镧、铈等稀土卤化物纯度大于4N且水、氧含量<50ppm;集成电路、5G通信等用高纯稀土金属靶材要求稀土金属纯度达到4N5以上。另外,不同应用对高纯稀土材料中的痕量杂质要求提出特殊要求。 稀土元素之间结构、物化性能相似,分离系数小;且碱土、过渡族金属与稀土某些性质非常相似,提纯难度大。国外以日本、美国、英国为主,掌握了高纯稀土材料制备核心技术,稀土化合物纯度达到5N~6N,稀土金属提纯达到4N5~5N级,并实现稳定批量,但其技术和超高纯稀土产品均对我国严格封锁。 目前,我国在高纯稀土制备方面与国外还存在较大差距。例如,在稀土化合物方面,国内可以大规模生产3N-4N稀土氧化物,但5N稀土氧化物仅少数厂家生产,大部分杂质元素如Fe、Al、Ca、Si等含量难以控制到1ppm以下;国内高纯稀土卤化物尚处于产业化起步阶段,仅基本掌握4N级高纯无水稀土卤化物制备技术,产品种类少,水、氧杂质含量难以控制到50ppm以下,敏感放射性杂质含量缺乏有效控制手段;在稀土金属方面,我国近年来实现了16种4N级超高纯稀土金属提纯技术的突破,并开展4N5级高纯稀土金属的提纯技术研究,但对于高端应用场景,现有的技术手段对于ppb级的痕量杂质去除效果差,生产效率低、成本高,4N5级高纯稀土金属难以批量化生产。 为保障我国高端装备、电子信息、国防军工等领域关键核心材料的自主可控,针对目前高纯稀土提纯工艺流程复杂,装备规模小、提纯效率低、制备周期长等问题,如何解决稀土基体中痕量杂质的高效分离问题,突破5N~6N超高纯稀土化合物、4N5~5N级高纯稀土金属工程化制备技术和关键敏感杂质痕量去除技术,开发精准控制的大型高效提纯新装备是亟待解决的重大工程技术难题。 稀土元素之间结构、物化性能相似,分离系数小;碱土、过渡族金属与稀土某些性质非常相似,提纯难度大。国外以日本、美国、英国为主,掌握了高纯稀土材料制备技术,且对我国严格封锁,稀土化合物纯度达到5N~6N,稀土金属提纯达到4N5~5N级,并实现稳定批量。国产稀土化合物及金属产品纯度及规模化制备水平仍低于国外。为保障我国高端装备、电子信息、国防军工等领域关键核心材料的自主可控,针对目前高纯稀土提纯工艺流程复杂,装备规模小、提纯效率低、制备周期长等问题,开发5N~6N超高纯稀土化合物、4N5~5N级高纯稀土金属批量稳定制备技术和关键敏感杂质痕量去除技术,开发精准控制的大型高效提纯新装备是亟待解决的重大工程技术难题。

推荐机构: 中国有色金属学会

2023年度

共1页 转到