如何实现在原子、电子本征尺度上的微观动力学实时、实空间成像?

超快动力学 阿秒电子显微 阿秒时间分辨率 皮米空间分辨率

电子显微镜可以深入了解物质的最小细节,例如可以揭示材料的原子结构、蛋白质的结构或病毒颗粒的形状。然而,自然界中的大多数材料都不是静止的,而是一直在相互作用、移动和重塑。比如光与物质之间的相互作用在植物、光学元件、太阳能电池、显示器或激光器中普遍存在,其相互作用的内在本质是由光场驱动的电子运动所决定的,发生在飞秒(10-15秒)甚至阿秒(10-18秒)的超快时间尺度上以及皮米(10-12米)的超小空间尺度上。因此,为了对复杂材料中功能的微观粒子起源进行直接可视化,需要同时具备“皮米空间分辨率”与“阿秒时间分辨率”的阿秒电子成像技术,从而实现对原子、电子的运动及其相互作用规律的实时、实空间观测。然而,目前超快电子成像技术受到发射度大、亮度低、以及时间抖动、光发射电子固有的能量弥散等限制难以突破飞秒-纳米级时空分辨瓶颈。这些难题的解决可提供原子、电子在本征尺度上的微观动力学直接时空成像,将有力推动我国基础物理、新型光电子器件、超快化学、生物安全 、量子科学、清洁能源等重要科技前沿领域的发展,为我国基础研究的原始创新突破提供有效支撑。

推荐机构: 中国光学工程学会

2023年度

共1页 转到